Mitochondrial response to calcium in the developing brain.
نویسندگان
چکیده
Developmental differences in mitochondrial content and metabolic enzyme activities have been defined, but less is understood about the responses of brain mitochondria to stressful stimuli during development. Cerebral mitochondrial response to high Ca(2+) loads after brain injury is a critical determinant of neuronal outcome. Brain mitochondria isolated from 16-18-day-old rats had lower maximal, respiration-dependent Ca(2+) uptake capacity than brain mitochondria isolated from adult rats in the presence of ATP at both a pH of 7.0 and 6.5. However, in the absence of ATP, immature brain mitochondria exhibited greater Ca(2+) uptake capacity at pH 7.0 and 6.5, indicating a greater resistance of immature brain mitochondria to Ca(2+)-induced dysfunction under conditions relevant to those that exist during acute ischemic and traumatic brain injury. Acidosis reduced the maximal Ca(2+) uptake capacity in both immature and adult brain mitochondria. Cytochrome c was released from both immature and adult brain mitochondria in response to Ca(2+) exposure, but was not affected by cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition. Developmental changes in mitochondrial response to Ca(2+) loads may have important implications in the pathobiology of brain injury to the developing brain.
منابع مشابه
Evidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملThe impact of COVID-19 during pregnancy on fetal brain development
The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...
متن کاملBiophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane
Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...
متن کاملاثرات محافظتی رسوراترول در برابر اختلال عملکرد میتوکندریایی ناشی از پاراکوات
Background and purpose: Resveratrol (RSV) is a naturally existing polyphenolic compound abundantly found in grapes and several plants. It has potent free radical scavenger and antioxidative properties with significant effects in reducing oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to PQ induced tissue damage. In this study, the protective effect of RSV was invest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research. Developmental brain research
دوره 151 1-2 شماره
صفحات -
تاریخ انتشار 2004